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Abstract   
An inspection of abstracts from 2,350 references produced a first-cut set of 441 studies and 
reviews that were subsequently classified and reviewed with respect to their potential to 
document responses of salmonids to habitat changes, and to guide future monitoring of salmonid 
watersheds. Although the literature on habitat requirements is vast, it was necessary to 
distinguish between studies that relied on correlations based on observational designs and those 
which attempted experimental designs to test cause-and-effect mechanisms. Our understanding 
about environmental effects on fish is largely based on weak inferences from observational 
studies, which has a direct bearing on monitoring strategies. Such studies are useful in generating 
hypotheses on cause-and-effect, but such hypotheses need to be tested through appropriate 
experimental designs in the context of a validation monitoring approach.  Findings from seven 
reviews (1988-2002) were assessed jointly with specific studies. Articles from 30 studies were 
reviewed, drawing from single or multiple streams, and purely observational or ‘natural 
experiment’ designs, in order to assess what improvements are needed in future programs. 
Relatively few studies were long term or from multiple watersheds; most studies were of one 
year or spanned a single generation. Although large-spatial scale, short-term studies have 
increased and provided insight into clustering of populations and dependency on environmental 
indicators at broader scales, there is no indication of the extent to which space can be traded for 
time when making inferences. The main technical deficiencies were the lack of concern about 
unbiased density estimates and poor statistical design, analyses and reporting. Analyses that 
simulate alternative sampling processes and expected biases in stream networks over time and 
space would help resolve some of these deficiencies. Overall, I concluded that current 
freshwater-based monitoring programs will either: (1) fail to indicate an improvement associated 
with stream habitat restoration in terms of smolt recruitment, returning adults, or population size 
increase at the watershed scale, or (2) indicate an improvement but fail to demonstrate which and 
how habitat changes were responsible so that subsequent restoration policy could be made more 
cost-effective. Recommendations for approaches to a large-scale monitoring design, based partly 
on this review are presented. The first-cut list of references, with abstracts and classification 
codes, is available electronically from the author.
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Goal 
I conducted a preliminary but broad literature review and synthesis on studies of salmonid 
response to habitat change in Pacific Northwest fluvial systems at the request of Washington 
State’s Independent Science Panel (ISP). My review attempted to find studies that could 
demonstrate cause-and-effect through strong inference supported by viable mechanisms rather 
than unsupported correlative relationships. Knowledge about the dominant mechanisms 
responsible for restraining the recovery of salmonids in streams is essential. In the language of 
scientists concerned with salmonid restoration, the appropriate approach is though “validation 
monitoring.” This preliminary synthesis built on the review results to help determine 
requirements for validation monitoring and how current approaches might be improved. 
 
Objectives 
(i)  Conduct a thorough literature search and produce a preliminary list of potentially relevant 

references in electronic format, 
(ii)  Select and annotate subsets of references under classifications of habitat, stream type, and 

fish response type, 
(iii)  Compare and synthesize information drawn from the most relevant and better quality 

studies, and 
(iv)  Outline monitoring approaches needed to provide information that will incrementally 

improve the well-being of native fish populations through habitat management. 
 
I describe the following procedure in detail under respective headings: 
1. A broad online search of web-based databases of citations with abstracts was conducted, 

followed by a ‘first cut’ selection made after reading all abstracts and adding references 
missed by the search. 

2. A classification process was devised for navigation and selection of reference sets of interest, 
and to provide a summary of trends and gaps in research. 

3. Selected articles were reviewed to provide more insight into strengths and weakness of current 
approaches, with emphasis on quantitative responses of salmonid populations at different 
scales and life histories. 

4. Results and Discussion and Conclusions and Recommendations sections were prepared. 
 
1. Online Search 
As described in Appendix 1 I searched five databases covered by Cambridge Scientific Abstracts 
(CSA), identifying 3,560 references. Elimination of most duplicate references was possible using 
EndNote software (ISI ResearchSoft), which deleted 34% of the total. Abstracts for all the 
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remaining 2,350 references were read, and a ‘first cut’ of 441 references was made. This total 
included references from other sources that the CSA search failed to encounter, including three 
reports located by an ISP member. The first cut process was inevitably subjective, but the 
following guidelines were followed: 
(i)  Any reference that could have a bearing on predicting salmonid quantities as a function of 

instream habitat, riparian, or land-use/cover, or designing studies thereof was selected. 
(ii)  References that only considered specific water quality issues such as acid rain or other 

pollutants were not selected. 
(iii) References that only considered nutrient enhancement through chemical or carcass addition 

were not selected. 
(iv) Studies specifically oriented towards dams or reservoirs were not selected. 
(v)  Laboratory or microhabitat/habitat field work was included if the results were useful for 

defining or assessing meaningful response or explanatory variables in larger scale studies. 
 
2. Classification 
The 441 first-cut references inevitably contained a variety of interests, approaches, processes, 
and spatial/temporal scales. To enable use of these to locate results of interest and design 
monitoring surveys, classification of these references was necessary to enable navigation and 
focus critical evaluation on subsets of key references. 
 
A classification process was developed (Appendix 2) that permits Boolean searches on one field 
to locate subsets of references of interest. For example, abstracts of all studies that predict the 
effect of livestock grazing on fish quantities in multiple stream studies sampled at a reach scale 
can be selected. Table 1 shows some examples of selections of potential interest from an initial 
cut of 435 references. The first cut set was also used to derive trends in the temporal and spatial 
scales of studies over time.  
 
I archived all references in EndNote, so future searches under different criteria would be 
straightforward and options exist for exporting information to other databases or formats. 
Citations and abstracts from the first cut are available from the author. The original CSA search 
material, including abstracts, is also available upon request. 
 
3. Review of Selected Articles 
A selection of 30 articles corresponding to the first subset in Table 1 was reviewed in detail. 
Restriction to only 30 (6.8% of 441) articles was subjective, and was largely dictated by time 
constraints. The articles chosen for review were based primarily on their relevance with respect 
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to detection of habitat change on quantitative salmonid responses, and secondarily on their 
potential to reveal issues, particularly statistical design and sampling biases, of importance to 
validation monitoring.  The frequency of incomplete or inadequate reporting or analysis in 
articles was too high to attempt a meta-analysis without access to original data. Further sampling 
and more formal review of the literature is recommended, given that limited major reviews 
covering worldwide literature on this subject have been produced since 1991 (Meehan 1991). 
However, a supplement in the Canadian Journal of Fisheries and Aquatic Sciences was dedicated 
to Atlantic salmon (e.g., Armstrong et al. 1998). Also, an agency report  (Keeley et al. 1996) and 
a recent publication (Roni et al. 2002), that were not revealed in the original search of May 2001, 
looked specifically at effects of stream restoration on Pacific Northwest salmonids. All these 
sources are considered here. 
 
The emphasis of this preliminary review was on quantitative responses of salmonid populations 
at different scales and life histories in freshwater with respect to habitat changes. The issue of 
what is an appropriate measure of an anadromous salmonid population is critical. The ultimate 
measure of ‘well-being’ is the abundance of returning adults (i.e., spawning escapement), 
normally estimated on the basis of direct counts on spawning beds in streams, but is usually 
underestimated in proportion to the degree of spawning in substrate in main stems of river 
systems (Dauble and Geist 2000; Tschaplinski  2000). While this is an essential measure for 
several applications over longer time scales and is important to roughly estimate marine 
mortality rates, its ability to reflect improvements in freshwater habitat can be compromised by 
inaccuracies in those mortality estimates (Kareiva et al. 2000; Dambacher et al. 2000).  
Recruitment rates to smolt stage can only be estimated in a limited set of catchments whose 
geography permits installation /construction of special structures close to the sea for tracking of 
downstream migrants. Therefore, in most cases only estimates of population sizes of parr 
(potamodromous and anadromous stocks) at specific ages in each drainage are possible. While 
current technology only permits accurate estimation of local densities at habitat- or reach-scales, 
it is no easy task to infer basin-wide populations and changes thereof from such estimates. The 
ability to make these inferences, or alternatively to make arguments about habitat improvement 
based only on local density estimates, is the most essential factor when assessing the utility of 
existing studies. 
 
4. Results and Discussion 
4.1. General  results of classification 
Long term studies (Figure 1), mostly on single watersheds, undertaken between the 1950s and 
1980s (Hunt 1976; House 1996; Tschaplinski 2000) have declined (Figure 2), and have been 
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replaced by short-term, larger spatial scale studies published from the late 1980s to the present 
(Figure 3). However, research has been dominated by small-scale, short-term studies throughout 
the past quarter century (see Figure 1 for period of literature search from late 1970s). This 
dominant response to perceived needs reflects a combination of the prevalence of a reductionist 
philosophy founded on the primacy of determining mechanisms at small scales, time limitations 
on graduate student research, and institutional or political effects limiting the period of funding.  
 
A good example of the short-term, small-scale approach is provided by the review and analysis 
reported by Keeley et al. (1996).  They used two models to predict changes in adult salmonid 
production: 
 
(1) For species that spawn and whose juveniles rear in streams: 
adult/area = ( juveniles produced/area) * (survival rate of juveniles to adults); 
 
(2) For species that spawn in streams, but whose juveniles rear in either lakes or estuaries: 
adults/area =( embryos/area) *( survival rate to smoltification )*(survival rate to adult). 
 
Keeley et al. (1996) demonstrated significant increases (averaging 123%, analyzing species 
separately) in local densities of salmonids in stream habitats (corresponding to juvenile 
production in Model (1)), based on paired-t tests on paired reaches of unspecified dimension or 
stream order. They projected returning adult densities based on published ocean survival 
estimates (Model (1)). Only changes in area of spawnable gravel data were reported (8.5-fold 
mean increase for restored habitats) for species corresponding to Model (2), so projections from 
that model were not attempted. 
 
Two major questions in Model (1) not discussed were: (a) how representative is the sample of 
the population occupying the whole freshwater environment (Bilby 2000), and (b) given that 
most of the samples were presumably during low-flow seasons, what seasonal effects, such as 
winter habitat, could change the projections? Regarding (a), it can be argued that the smaller the 
reach restored the greater the likelihood that it may serve as a refuge that attracts fish from 
surrounding habitats. Predation or other losses due to poor refuge habitat may be reduced 
sufficiently to affect the whole population, but its overall biological production may not be 
because food supply may not be increased. Regarding (b), while the study separately analyzed 
results from off-channel habitats, it did not recognize that the principal value of such habitats 
was during winter high flows (Nickelson et al. 1992a). Although inferences from Model (1) were 
driven by juvenile biomass densities, the strong statistical results reported by Keeley et al. (1996) 
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do imply that stream habitat restoration would increase smolt production and average adult 
returns if improvements occurred on a sufficiently large scale and that freshwater productive 
capacity was limiting. 
 
The importance of question (b) is illustrated by a more recent multi-stream, experimental study 
(Roni 2001; Roni and Quinn 2001) in which seasonal differences in the effects of large woody 
debris (LWD) were reported. Juvenile coho densities were 1.8 and 3.2 times higher in LWD-
treated reaches compared with reference reaches during summer and winter, respectively, while 
cutthroat and steelhead trout did not differ between treatment and reference reaches in summer 
but were 1.7 times higher in treatment reaches in winter. 
 
Earlier reviews during 1988-1991 (Fausch et al. 1988; Bjornn and Reiser 1991; Hicks et al. 
1991; Platts 1991; Reeves et al. 1991) provided good arguments for large scale or multi-scale 
research programs on a temporal or spatial basis. This review of literature during the past quarter 
century indicates that the mean time-span of studies has decreased considerably  (Figure 2), 
while large-scale designs, as indicated by landscape and “whole basin” studies, have increased 
(Figure 3). This is despite analyses indicating that year-to-year variability in salmonid 
populations can be considerable (Platts and Nelson 1988; Holtby and Scrivener 1989; Bradford 
et al. 1997; Ham and Pearsons 2000) even when environmental conditions vary little (House 
1996). Such variability can severely constrain the interpretation and quantification of habitat 
change effects on survival rates or on sizes of anadromous (Cunjak et al. 1998; Williams 1999) 
or resident (Crisp 1993; Clark and Rose 1997) adult populations. 
 
Conversely, the increased attention given to spatial scale effects, including multiple watersheds 
and large basins, and corresponding landscape variables have provided some insight into 
regional fidelity of populations or patches within metapopulation domains (Rieman and 
McIntyre 1995; Niemelä et al. 1999). Also, an increasing realization that habitat and 
hydrological effects are more meaningful when measured at spatial and temporal scales larger 
than those at the reach sampled for fish has been demonstrated empirically (Watson and Hillman 
1997). However, considering that several factors that affect temporal variability are likely to be 
dependent on environmental circumstances peculiar to individual populations, attempting to 
trade space for time produces considerable risk associated with diagnostic or prediction attempts. 
 
Roni et al. (2002) conclude from the examination of 93 papers that little is known about the 
effectiveness of most restoration techniques. Most of the improvements were evaluated at 
juvenile life stages and little has been done to detect changes in adult populations. From Table 1, 
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26 of 155 (23%) multi-stream studies and 49 of 101 (49%) single stream studies were 
‘experimental,’ according to my generous definition (‘experi,’ Appendix 2). However, failures in 
design and execution lead me to the same general conclusions as Roni et al. (2002). 
 
More generally, the record of monitoring studies has been marred by several failures. Reid 
(2001) addressed 30 flawed monitoring projects (mostly hydrological, sedimentological, or 
wildlife), and identified twelve problems causing failures. Design problems were responsible in 
70% and procedural problems in 50% of the projects. Design problems were similar among land-
management agencies, research agencies, and universities, while procedural problems were 
relatively small in university projects. Problems causing failure in flawed projects were: 
(1) under trained or unmotivated field crews (37%, procedural), 
(2) a sampling plan incapable of measuring or detecting what is needed (30%, design), 
(3) inadequate monitoring duration (27%, design), 
(4) delays in analyzing data (27%, procedural), 
(5) absence of collateral information to interpret results (20%, procedural), 
(6) technological failures (17%, procedural), 
(7) data irrelevant to objective (17%, design), 
(8) fundamental misunderstanding of system (13%, design), 
(9) inadequate statistical design (13%, design), 
(10) lack of continuity due to personnel changes (13%, procedural), 
(11) lack of institutional commitment (10%, procedural), and 
(12) protocol changes affecting comparability (7%, procedural). 
 
Those with fisheries experience will find many of these problems familiar, some of which are 
discussed in the following section. 
 
In conclusion, although strong inferences of increase in population size of juveniles in streams 
have been documented, relating this to smolt recruitment and returning numbers of adults at 
appropriately large scales has been neglected. Therefore, studies have not so far addressed 
empirically the estimation of change in total population size as a result of restoration efforts. 
 
4.2. Reviews of selected articles 
Tables 2 and 3 summarize my analysis of the 30 references, of which 27 were multi-stream 
(multi), 13 were ‘experimental’ (experi), and 10 were both. The following generalizations are 
relevant to assessing the usefulness of studies in quantifying fish responses to potential causative 
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factors describing stream habitat, but are equally relevant to considerations of improved designs 
of future validation monitoring studies.  
 
First, failings in design, analysis, or reporting were widespread, as found by Fausch et al. (1988) 
in fisheries studies and more generally by Reid (2001). The following problems were most 
common: 
(1) Failure to carefully analyze and reduce the set of explanatory variables before the final 

analyses involving the response, so that variable confounding, non-robust predictions, and 
low statistical power cannot be mitigated. Stepwise regression to eliminate variables is 
frequently used, but is commonly recognized as a dangerous tool in the absence of prior 
analysis. 

 
(2) Failure to incorporate interactions in observational studies is very common. Excuses that they 

complicate the analysis when prediction is needed, or that no theoretical reason exists for a 
1st order interaction, are not convincing given the frequency of main effect confounding and 
the robustness of the model for predictions elsewhere, especially when it is difficult to 
approach a balanced design in observational studies. Also, there are good reasons for 
expecting synergistic or compensatory effects between factors, such as proxies for feeding 
and refuge for stream fish. 

 
(3) Failure to summarize the effectiveness of the model as a predictive tool. Although I have 

summarized R2 values in Table 3, its use in comparisons has been criticized (Bayley 1988; 
Fausch et al. 1988) because it is sensitive to the ranges of explanatory variables and does not 
directly provide a comparable estimate for the precision of the model’s predictions. 

 
(4) Failure to test for, or explain elimination of, outliers or influence points. Frequently, such 

points are valid, but often show up because of an inappropriate statistical model. Rarely are 
plots of residuals of proposed models provided. 

 
The second concern is the continuing failure to address the issues of sampling bias in the 
estimation of abundance and related population properties, even though there has been increased 
criticism of uncorrected common methods, such as multiple removal, and practical solutions to 
address this have been published during the past decade.  
 
However, there are bright spots regarding both concerns. There are some examples of prior 
analysis of explanatory variables (Bowlby and Roff 1986; Watson and Hillman 1997), and 
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designs regarding spatial scales (Nickelson et al. 1992b; Rieman and McIntyre 1995; Riley and 
Fausch 1995; Keith et al. 1998; Dunham and Rieman 1999; Solazzi et al. 2000). There are fewer 
bright spots regarding bias-correction of fish samples. Sampling is dominated by multiple 
removal (score 4, Table 2) or removal until apparent depletion (score 3) by electrofishing, and 
snorkeling (score 2). There is nothing wrong with these approaches as a source of comparable, 
quantitative estimates, providing that the protocol is consistent and there is a bias-correction. 
Sophisticated computational processes based on statistical theory (e.g., Pradel 1996) will not 
help, unless their assumptions (mainly predictable or constant catchability and closed population) 
can be verified. Usually they are not, because catchability (or observability) can change 
considerably as a function of physical habitat and repeated passes, and size and species of the 
quarry. An exception is the work by a research group at the Oregon Department of Fish and 
Wildlife (Nickelson et al. 1992a; Nickelson et al. 1992b; Solazzi et al. 2000) who either 
performed local mark-recapture or corrected their multiple removal data using separate 
calibration results (Rodgers et al. 1992). 
 
The foregoing includes strong criticism of peer-reviewed literature, but is based on full-text 
reviews of only a small number of the first-cut set of articles. Nonetheless, in order to detect 
changes in whole populations resulting from restoration efforts, long-term or multi-watershed 
surveys are needed that require comparable density estimates across habitats, crews, gear, and 
stream sizes. Ignoring sampling biases will magnify biases in inferences at these larger scales. I 
did observe that concern was frequently expressed about sampling biases in the methods sections 
of reviewed publications reviewed, but usually no action to determine and apply bias-corrections 
was taken. 
 
4.3. Other issues  
The review drew my attention to other issues that give rise to concern or optimism about current 
approaches to salmonid-habitat studies: 
 
Habitat evaluation model (HEM) approaches - I have criticized the application of HEM 
approaches to the prediction of fish distributions (Bayley and Li 1992). The present literature 
search indicates that there are other studies criticizing the HEM approach, and more specifically 
the Instream Flow Incremental Methodology (IFIM) approach, than those supporting it (Table 1). 
The most common criticism was based on the frequent failure to find a proportional relationship 
between fish abundance and Weighted Usable Area derived from microhabitat preference curves. 
Making reach-level inferences from microhabitat data is subject to several errors of a non-linear 
nature due to a mismatch of spatio-temporal scales. 
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Risk analysis - Although risk-based analysis, that can take the approach of Bayesean statistics, 
frequentist (using combinations of Type I and II errors and given effect size), or so-called 
Bayesean Belief Networks, provides many advantages over use of arbitrary significance values, 
this search only encountered four references (Korman and Higgins 1997; Lee and Rieman 1997; 
Nickelson and Lawson 1998; Ham and Pearsons 2000) that attempted some risk analysis 
(although the search was not specifically directed towards this method). Given that results of 
Bayesean approaches (not to be confused with Bayesean Belief Networks) are much easier to 
explain to managers and to apply to economic trade-off estimates, I hope that the lag in scientific 
capacity to take advantage of this approach will be shortened. 
 
Seasonal bottlenecks - As implied above, there continues to be an emphasis on surveying streams 
during summer months (e.g., Table 3), despite the growing evidence that quantities of certain 
discharge-related winter habitats may provide overriding bottlenecks affecting adult numbers  
(e.g., Tschaplinski and Hartman 1983; Hillman et al. 1987; Cunjak 1996; Solazzi et al. 2000). 
Studies that detect year-to-year effects of hydrological change (Scarnecchia 1981; Paulsen and 
Fisher 2001) need to attempt to distinguish between the typically positive effects of natural 
winter discharges and the negative effects of low summer levels, while accounting for potentially 
confounding variables such as temperature. Future monitoring programs risk misidentification of 
dominant causative factors unless summer, winter, and spring fish samples are taken regularly. 
 
5. Conclusions and Recommendations 
My overall conclusion is that current freshwater-based monitoring programs will either: (1) fail 
to indicate an improvement associated with stream habitat restoration in either smolt production 
or returning adults at the basin scale, or (2) indicate an improvement but fail to demonstrate 
which and how habitat changes were responsible so that subsequent restoration policy could be 
made more cost-effective. ‘Proof’ of dominant cause-and-effect relationships operational at 
scales appropriate for the population will always be elusive, even with the best designed field 
experiments. However, validation monitoring approaches that aim for strong inference based on 
multi-stream studies over time (see section 5.2 below) are feasible, but no good examples were 
found. 
 
Solutions and limitations from existing studies (see 5.1 below) highlight issues of design and 
analysis given a land-use and stream habitat restoration scenario. Section 5.2 contains 
recommendations regarding how to proceed in designing a long-term monitoring program. 
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5.1. Principal findings from literature search 
1. Further short-term, large spatial scale studies that attempt to trade space for time will probably 

not provide sufficient new information to justify costs, unless they are planned to be part of a 
long-term program. 

 
2.  The habitat-microhabitat evaluation modeling (HEM) approach has been criticized by a 

similar number of articles as those supporting it. Due to its frequent failure to substitute for 
direct estimates of fish densities, in the author’s opinion the approach cannot justify further 
expenditure in the context of validation monitoring.  

 
3. As earlier reviews found, most surveys continued to lack power through limited degrees of 

freedom, many lacked appropriate statistical treatment of candidate explanatory variables, and 
many failed to report comparable statistics. In addition, most ignored interactions, and most 
lacked appropriate bias corrections of abundance estimates. 

 
4. Designs of short-term, large spatial scale studies have improved: several of these and earlier 

long-term studies are of sufficient quality to link their data with future designs (see 5.2 
above). 

 
5. Publications describing large-scale, multi-watershed, short-term studies have increased, and 

provide a glimpse of spatial scale-dependent factors, but reports on multiple year studies have 
decreased. Key papers highlighted the limitations of current approaches due to year-to-year 
unexplained population variation, and the tenuous link between juvenile and adult cohort 
sizes. 

 
6. Although more fisheries biologists are becoming concerned about the importance of obtaining 

unbiased density estimates for joint analyses among surveys, watersheds, and stream sizes that 
necessitate the deployment of different sampling protocols, there is little evidence from the 
literature in general that the practical steps to achieve this are being undertaken. Although 
consistent protocols are an essential prerequisite, they are insufficient to account for biases 
that can be caused by the very habitats that are of potential ecological interest. 

 
7. Preparation of an efficient design for validation monitoring that involves fish sampling 

depends on the experience of the practitioners. This is insufficient given the complex process 
of finding a ‘natural experiment’ in watersheds replete with non-random distributions of 
‘nuisance variables’ that influence salmonids in addition to the habitat factors of interest. 
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Even with relatively simple systems, it is difficult to make credible predictions of statistical 
power based on experience alone. However, no publications were found that model fish 
sampling designs in realistic settings, such as by simulating the data collection process under 
alternative designs using sample variances from previous studies. Therefore, no guidance 
exists for optimizing survey designs, particularly at multiple watershed scales, that purport to 
detect changes at given probabilities. 

 
5.2. Recommendations - Where do we go from here? 
Based on my review of the literature and personal experience I offer the following 
recommendations to improve understanding of the responses of salmonids to habitat changes. 
Future monitoring surveys should take advantage of existing, comparable fish sample 
information, providing that the information contributes to a design that incorporates current or 
planned contrasts between basins with extensive habitat restoration (treatments) and those with 
unchanged habitat (controls). Essential components of future validation monitoring surveys are 
as follows: 
 
1.  Reassess existing long-term and basin-wide, short-term data sets with repeatable protocols, 

and identify drainage basins that have contrasts in degree of habitat restoration (with or 
without existing fish samples). Utilize these sources in conducting components 2 and 3. 

 
2. Develop simulation models of cost-limited, alternative fish sampling designs that incorporate 

empirical variances and biases, to provide a quantitative template for recommendation 3. 
 
3. Develop long-term (decades) monitoring programs that treat a series of basins and wild fish 

populations as natural experiments along a gradient of habitat restoration. The sampling 
design should track metapopulations or extensive populations and physical changes within 
and among watersheds down to reach or segment scales. Because seeding and early survival 
variation can change the habitat variables that are limiting, a measure of year-to-year 
reproduction success of key salmonids (at least down to watershed scales) should be 
concurrent with juvenile and adult monitoring of all fish species. Reach-scale, stratified 
random fish sampling effort using protocols that are bias-correctable should be divided 
between mid-summer and winter periods. Spatial strata should be watersheds expecting/not 
expecting significant human alteration, litho-geomorphological zones within watersheds, and 
stream sizes. 
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4. Monitor flows to predict changes in seasonal habitat availability, including floodplains, 
among watersheds, and monitor sediment transport at least sufficiently for models to 
distinguish substrate size fractions among candidate watersheds and orders of streams. 

 
5. Record key physical habitat variables, such as maximum pool depth, area, and frequency, 

large wood, and substrate on a broad spatial scale, but on 5-year or more cycles. Devise a 
parallel system of monitoring of an index of stream fertility. 

 
6.  Record physical habitat variables in fish-sampled reaches to: (1) reduce unexplained variance 

with ecologically plausible variables when abundances are estimated on broader scales, and 
(2) provide data necessary to correct fish abundance estimates when catchability is known or 
suspected to be affected by such habitat variables (see 7 below).  Current and prior sampling 
protocols should be ‘quantifiable’ so that they can be calibrated with accurately known 
abundances (through mark recapture on temporarily closed populations, not removal) to 
correct for biases due to physical attributes of reach (6), fish size, and species. The aim is to 
provide local abundance estimates from past and future samples that are independent of the 
capture process. 

 
8.  Support studies at microhabitat or habitat scales when the processes identified and quantified 

can be scaled to watershed and decadal scales. In particular, studies are needed that investigate 
groupings of fish responses by taxa and size or age that are ecologically meaningful at those 
larger scales. 

 
Long-term validation monitoring surveys should not be expected to produce results before ten 
years (barely two generations of many salmonid populations), but matching designs with existing 
surveys, particularly broad-scale ones, may detect large effects in a shorter time. Such surveys 
are not, and cannot be, designed to determine mechanistically how the many processes indicated 
at habitat/microhabitat scales are linked to those indicated at population or metapopulation 
scales. Rather, they aim at ‘strong inference’ that indicates the effects of a subset of small-scale 
mechanisms that have been independently shown to be valid candidates. In conclusion, based on 
the review of 441 abstracts and the subsets of 30 articles and other reviews, I believe that in the 
absence of a well-designed, broad spatial and temporal scale monitoring program, no clear 
reasons for stock recoveries or collapses will be found, and expenditure on scientific approaches 
to improve future management will remain unjustified. 
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Appendix. 1. Web Search Process. 
Five databases were searched using Cambridge Scientific Abstracts (CSA) 
(http://osulibrary.orst.edu/research/databases/csaccess.htm) applying the following Boolean 
string: 
 
Keyword (KW)=(salmon* OR trout*) AND KW=(stream* OR creek* OR channel* OR river* 
OR tributar*) AND KW=(abundance OR population* OR densit* OR biomass OR catch*) AND 
KW=(habitat* OR restor* OR graz* OR enhance* OR rehabilitate* OR e?closure*), 
where KW directs selection to title, keywords and abstract combined, 
 * = additional wildcard string of characters of length ≥0, 
 ? = single wildcard character (to include exclosure(s) and enclosure(s)). 
 
The search was applied to all references available, which included ‘grey’ literature and 
references going back to 1973 with respect to Aquatic Sciences and Fisheries Abstracts (ASFA), 
and all languages providing abstracts were in English. Results were: 
__________________________________________________________________  
 Database       # references 
 
 ASFA: Aquatic Sciences and Fisheries Abstracts   1,337 
  Conference Papers Index              9 
  Environmental Sciences and Pollution Mgmt    1,251 
  Oceanic Abstracts            259 
  Zoological Record Plus (2001)           37 
  Zoological Record Plus (2000)         137 
  Zoological Record Plus (1997-1999)         225 
  Zoological Record Plus (1993-1996)           298 
  Recent References Related to Your Search            1 
  Web Resources Related to Your Search            6 
 
          Total         3,560 
__________________________________________________________________  
 
Dealing efficiently with this quantity of abstracts and duplicate references required some trial 
and error. Selecting references on the CSA web site proved laborious, and I deferred weeding out 
duplicates. Conversely, downloading all complete references, and uploading into EndNote 
(cross-platform software by ISI ResearchSoft), using filters appropriate for each database 
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(www.isiresearchsoft.com/en/help/enfilters.asp), permitted elimination of a majority of 
duplicates and efficient selection of references. 
 
The main problem with CSA (and probably any other computerized literature search system, that 
should all be regarded as state of the art) was that it missed several key references, because not 
all years of ‘core’ journals were present in any of the five databases. For example, no North 
American Journal of Fisheries Management references existed for 1986 and only 8 for 1985. 
Also, volumes 19 through 21 of American Fisheries Society Special issues were missing, which 
included the key review papers in volume 19 (Meehan 1991).  
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Appendix 2. Classification Code Words 
I used the following codes for classification of ‘first cut’ set of references (see Table 1). They are 
entered under the ‘label’ field in an Endnote database available upon request. 
 
Response variables: 
quant empirical, field or lab data, as density or biomass or production estimate of salmonids at 
fry=>juvenile stages 
qual inc. non-density data such as individual growth rates 
spawn redd densities, egg=>alevin studies, spawner survey 
popdyn thinning, max. density production 
migrat movement, dispersal, migration 
nofish a few references with fish habitat or inverts as endpoints 
 
Design features: 
experi ‘natural experiment’ design, or habitat restoration, enhancement, (before-after control-
impact) BACI, other paired comparisons (e.g., day vs. night); includes experimental stocking of 
fish with control. 
multi >1 ‘replicate’ streams involved, unless a contrasting pair is used in an experiment 
temporal multiple year-by-year comparison, except for simple before/after comparison 
enclos artificial enclosures, includes artificial streams, excludes temporary blocking for fish 
capture 
lab laboratory study 
 
Spatial scales of fish measurements and inferences (see Frissell et al. (1986)): 
basin basinwide production estimates such as smolt production, and other aggregated estimates, 
such as of abundance or biomass, at this scale 
segment 
reach including home range; papers with quantitative fish sampling that was not specifically 
bounded by habitat types were normally included in this category. 
habitat pools, riffles, glides or runs, etc. 
microhab including territory (and used for habitat-based models such as IFIM, habitat quality 
index (HQI), etc.) 
offchann off-channel habitats studied, including small, floodplain tribs., alcoves, sloughs. 
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Explanatory variables: 
graz any riparian grazing effect 
ag agricultural not specific to grazing, e.g., row crop, general 
ripar including canopy, bank vegetation, logging or clearcutting in riparian zone 
instream any ‘physical quantity’ in the stream: width, depth pool dims., cover (including plants), 
undercut banks velocity gradient, weirs or other instream structures (includes substrate and lwd) 
substrate including sediment 
lwd large wood, including brush bundles 
lulc land-use/cover, but also includes geomorph/litho contrasts/basinwide info (including basin 
area) 
hydro inc upwelling, hyporheic, ice effects 
lakehydro effects of lakes upstream, including reservoir operation effects 
wtemp water temperature 
watqual water quality (chemical, DO, turbidity) 
fishing effect of stream fishing effort estimated 
trophic invertebrate data, stable isotope 
sppinter species interactions (predation, competition) including allo- vs. sympatric comparisons, 
and joint salmonid-non-salmonid studies or when salmonids don't dominate the fish fauna 
noenv no ‘physical’ environmental effects tested (macrophytes included, watqual excluded) from 
microhab=>landscape scales. 
 
Miscellaneous: 
hem habitat evaluation (HEM) or numerical habitat models (NHM) methods, including IFIM and 
HSI (below), HQI, HABSCORE (but this also includes catchment variables), HPI, NHM 
IFIM includes PHABSIM, IFIM, HSI, WUA using Bovee et al.'s approach 
review literature review (excluding data mining studies) 
modeling alternatives to normal statistical analysis (regression or discriminant) , e.g., Bayesian, 
neural network, non-linear models, simulation 
risk any risk probability or power analysis 
design statistical sampling 
method sampling methods or comparison of different measurement methods 
warnings criticism or failure to get expected results 
economic any estimates of costs or benefits 
philosophy including approach to assessment, management 
datasource  primarily source of data 
foreign foreign language article with English abstract: French Norwegian German encountered.
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Table 1.  Frequencies of references from 435-references from the first cut set (see glossary of codes (underlined) in Appendix 2):
______________________________________________________________________________________________________
Subset of ‘quantitative’ references (total 216)  with habitat or reach -based quantitative fish sampling (excluding refs with stream
enclosure, laboratory, or nofish studies and reviews).

   Number of references 
   with multi      NOT multi

(>1 stream)  (1 stream only)
__________     ____________

All in subset   115 101
AND experi     26    49
AND graz     10     9
AND graz AND experi       3     7
AND ripar     28   19
AND ripar AND experi       9   11
AND temporal         11     26
AND temporal AND experi       2       9

Reference frequencies with habitat evaluation or numerical habitat models
(hem and instream flow incremental methodology-related (ifim) subset):

with hem  NOT warning 20 with ifim   NOT warning 12
with hem  AND warning 24 with ifim   AND warning 19
______________________________________________________________________________________________________

Reference frequencies from all 435 references, that include:
reviews 25 (10 with quantitative analysis)
lab or enclosure 28
temporal 62
modeling 41
risk   4
economic   4
stream fishing variable   3
warning 50
nofish 11
foreign language 11
______________________________________________________________________________________________________



Table 2. Papers reviewed in detail (30 articles): with location, response variables (normally density or biomass per surface area), fish
sampling method, and classification. (See Table 3 for outputs)

Author(Year) Location1 Fish species2 Gear3 Score4 Classification codes (see Appendix 2) all with quant

Barnard et al (1995) UK TRT-0 TRT-j TRT-a ATS-0 ATS-j PE +B 4.0 multi reach instream lulc temporal hem

Bjornn et al (1991) SE AK CHO-0 CHO-1 DVD SAL PE 3.0 experi multi habitat migrat ripar

Bowlby & Roff (1986) S ONT TRT (BKT, RBT, BRT) PE +B 3.0 multi reach instream wtemp trophic

Bremset & Berg (1997) Norway ATS-j BRT-j POO: SS + diver with net mk-
rec. RIF: PE(3)

4.5 multi habitat migrat instream

Bryant et al (1998) SE AK "CHO-j CHO-0 (DVD, STT, CUT
ignored)"

SN 2.0 multi habitat offchann lulc watqual

Clarke & Scruton (1999) NFD BKT (only salmonid) PE 4.0 multi reach instream trophic

Connolly & Hall (1999) W OR CUT PE +B 4.0 multi habitat ripar lwd lulc

Dolloff (1986) SE AK CHO-j DVD T mk-rec 5.0 experi multi reach lwd

Dunham & Vinyard (1997) NV CUT TRT PE +B 4.0 multi reach popdyn noenv temporal

Eaglin & Hubert (1993) WY TRT (BKT BRT) >10cm PE(3) 4.0 multi reach lulc substrate

Ebersole et al (2001) E OR RBT SN 2.0 multi reach wtemp

Giannico (2000) W BC CHO-j "PE, SS +B" 3.0 experi habitat lwd trophic

Grant et al (1986) NS NB SAL ATS TRT(BKT BRT) PE(5) +B 3.5 experi multi reach substrate ripar

Herger et al (1996) WY CUT PE(2) +B 4.0 multi habitat instream hydro

Horan et al (2000) NE UT CUT PE(3) 3.0 multi reach segment instream lwd substrate

Hubert et al (1996) WY TRT (RBT BRT BKT) PE +B (rem/mk-rec) 4.5 multi reach instream

Jenkins et al (1999) CA BRT TRT PE(3-5) +B 4.0 experi reach habitat popdyn temporal noenv

Jowett (1992) NZ BRT, RBT: 10-20,20-40,>40cm SN 2.0 multi reach instream wtemp watqual lulc trophic
hydro ifim hem

Keith et al (1998) SE AK CHO-0 CHO-j DVD-0 DVD-j PE(2,3) 4.0 experi multi reach migrat ripar lwd

Knapp et al (1998) CA RBT-0, -1, -2 (only salmonid) PE(3) rem and SN(surf) 3.0 experi reach graz spawn popdyn



Knudsen & Dilley (1987) WA SAL CHO-j TRT-0 STT-j CUT-j BS+SS/PE 4.5 experi multi reach substrate instream

Milner et al (1995) W UK BRT-0 BRT>0 ATS-0 ATS-j PE +B 4.0 multi reach instream lulc temporal hem

Nickelson et al (1992a) W OR CHO-j PE & SS mk-rec or corrected
removal +B

5.0 experi multi habitat instream offchann

Nickelson et al (1992b) W OR CHO-j PE & SS mk-rec or corrected
removal +B

5.0 experi multi habitat instream offchann

Platts & Nelson (1989) ID NV UT SAL PE(4) 4.0 experi multi reach graz ripar

Rieman & McIntyre
(1995)

ID BUT PE(1) or SN(2) + assumed
detectability

2.0 multi reach segment basin instream

Riley & Fausch (1995) N CO BKT-1, -2+ BRT-1, -2 PE(2-4) +B rem 4.0 experi multi reach migrat popdyn instream

Solazzi et al (2000) W OR CHO-1,j STT-1,j CUT-1,j TRT-0 "PE mk-rec, corrected removal
or SN, +B, T"

5.0 experi multi habitat lwd offchann

Watson & Hillman (1997) WA ID MT BUT (5 l-grps) "SN, if present PE & night
SN"

3.0 multi habitat reach segment ripar instream substrate

Paulsen & Fisher (2001) ID WA OR CHI-j NA (Pit tag-based survival) NA multi basin popdyn lulc hydro

1 non-US locations: BC British Columbia, NB New Brunswick, NS Nova Scotia, NFD Newfoundland, UK United Kingdom, often preceeded by bearings N, S, E, W, etc.
2 Taxa in Response variables:
CODE COMMON SCIENTIFIC 3 Gear: PE(2) BackPack Electrofisher(2 passes), SS net Seine, SN(2) Snorkeling
CUT Cutthroat trout Oncorhynchus clarki (2 divers), T Trap, BS Boat electrofisher, +B blocknets set, mk-rec mark-recapture
CHO Coho salmon Oncorhynchus kisutch estimate, rem = removal estimate (qualifications often implied in Score - below)
RBT Rainbow/golden/redband trout Oncorhynchus mykiss
STT Steelhead trout Oncorhynchus mykiss gairdneri
KOK Kokanee Oncorhynchus nerka kennerlyi 4 Score = relative accuracy of fish abundance estimation (averaged when >1 method used):
SOC Sockeye salmon Oncorhynchus nerka nerka 1 unqualified presence/absence in catch
CHI Chinook salmon Oncorhynchus tschawytscha 2 snorkeling count
CHU Chum salmon Oncorhynchus keta 3 1+ electrofishing or net seine passes
SAL All salmonids  4 multiple removal estimate
MOW Mountain whitefish Prosopium williamsoni 5 mark-recap or applied calibration based on mark-recap
ATS Atlantic salmon Salmo salar 6 rotenone or antimycin with mark-recap
BRT Brown trout Salmo trutta 7 draining or partial draining and rotenone
DVD Dolly varden trout Salvelinus malma
BUT Bull trout Salvelinus confluentus
BKT Brook trout Salvelinus fontinalis
TRT All trout
suffixes: -0 YOY, -1 age 1, -1+ age 1 and up, -j juveniles, -a adults,
() species included in preceding group code, e.g. TRT. 



Table 3. Papers reviewed in detail to date (30): Explanatory variable groups, sampling summary.

Author(Year) reach
length
(m)

wetted
width
(m)

#explan.
vars1

explan.vars
groups2

corr?3 inter-
ac-
tions?4

seasons #yrs #stre
ams

#sites N R2% CV?
5

analy-
sis
score6

Barnard et al (1995) 25-50 130 > 6-19 INS RIP BAS N N Su 2 602 602 29-46 N 3

Bjornn et al (1991) 2-12 4 > 0 INSns RIPns NA N Su 1 6 30 60 N 4

Bowlby & Roff
(1986)

1.7-18   > 5 INS BIO Y N Su Fa 1 20 30 30 62 N 7

Bremset & Berg
(1997)

1 > 1 INS NA N Su 2 3 24 24 NA NA 5

Bryant et al (1998) ? 4 > 0 INS N N Su 1 6 ? ? N N 3

Clarke & Scruton
(1999)

3 1stO, 1
2ndO

3? > 1 BIO NA NA Su 3 4 4 11 N N 2

Connolly & Hall
(1999)

1stO &
2ndO

12 > 1-3 INS BAS-ns Y N Su 3 16 16 16 36-71 N 5

Dolloff (1986) 85-170 1.6-2 1 > 1 INS (LWD) NA NA Su 3 2 4 12/48 N NA 3

Dunham & Vinyard
(1997)

1-4 1 > 1 BIO (fish dens) NA Y Su 14 NA NA 8

Eaglin & Hubert
(1993)

200 0.7-6.3
(BF)

6 > 2 INS BAS N N Su Fa 2 28 28 34 N 4

Ebersole et al (2001) 100-500 ? 9 > 1 INS N N Su 1 4 12 12 50 N 4

Giannico (2000) 4 2 2 > 2 BIO NA Y Su 1 1 ? NA NA 5

Grant et al (1986) ≈60-70 2ndO 3rdO 1>1 INS RIP NA N Su 1 13 13 26 NA N 5

Herger et al (1996) 1.7-16 1.1-3-8 INS Su NA NA 4

Horan et al (2000) 100 1.8-5 11 > 1-4/1 INS Y Y/N Su 3 6 88/4 88/4 12-
46/?

N 4

Hubert et al (1996) 30-330 0.9-80 20 > 4 INS BAS Y Y Su >10 95 158 166 38 Y 7

Jenkins et al (1999) 4.4-31/
340-500

? 1 > 1 BIO (fish dens) NA N Su-Fa 3 1 294/4 294/4 87/97 NA 6



Jowett (1992) 1000+ ? 101> 1-8
(22 sep)

INS BAS BIO Y* N Su 3 82 89 89 44-88 Y 5

Keith et al (1998) 20-76 2ndO 3rdO 3 > 1 INS RIPns NA Y/N Su 1 3 72 120 N N 6

Knapp et al (1998) 45-130 2-3.6 1 > 1 INS N N Su 4 1 3 9 50-83 N 2

Knudsen & Dilley
(1987)

1 > 1 INS NA N Su Fa 1 4 5 10 NA NA 5

Milner et al (1995) 50 130? BAS TMP N Y Su 4-10 13 26 ? 26-72 N 5

Nickelson et al
(1992a)

? ? 1 > 1 INS (pool types
& brush)

NA N Su Wi 4 21 199 380 N N 7

Nickelson et al
(1992b)

? ? 1 > 1 INS (pool types
& depth)

NA N Sp Su
Wi

5 52 199 958 N N 7

Platts & Nelson
(1989)

122-183 3-11 4 > 1 INS (temp) RIP
(canopy ns)

Y N Su 2-11 17 53 53 7-96 N 3

Rieman & McIntyre
(1995)

100 1-14 3 > 2 INS BAS Y Y Su 1 67 85 85 NA NA 8

Riley & Fausch
(1995)

250 2.9-5.8 6 > 1 INS Y N Su 4 4 8 14 N Y 9

Solazzi et al (2000) ? 3.2-4 1 > 1 INS (const.
pools)

NA N Su Sp 8 4 120 120+ N N 7

Watson & Hillman
(1997)

100 0.3-46 23 > 5-8 INS RIP Y Y Su 31 358 358/
31

53-90 N 9

Paulsen & Fisher
(2001)

NA NA NA BAS BIO (fish
size)

Y N Su-Wi 7 20 20 54-64 N 5

1 x > y, where x = number of explanatory variables considered,  y = number of explanatory variables retained in model
2 broad classification of explanatory variables: INS = any physical instream habitat variable, including bank overhang, macrophyte cover and water quality, temperature;

(ns - not significant)  RIP = any riparian vegetation variable, including canopy cover, grazing in buffer zone.
 BIO = any biological  variable, including fish properties, invertebrates, except macrophyte cover.
BAS = any landscape, land-use/cover (lulc), geomorphic or geologic reiobal variable
TMP = temporal variable as year-ro-year effect

3 Were explanatory variables investigated separately for correlations beforehand ?
4 Were interactions investigated?
5 Was some measure of precision of the predicted fish response, such as standard error of regression or coefficient of variation, calculated?
6 Author’s score (0 irredeemable, 10 perfect, 5 average) of design and analysis.
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Citation (1st author) Yrs Classification codes (see Appendix 2) Notes

Moscrip et al.(1997) 40 multi experi reach spawn lulc hydro temporal Urbanization WA, early/late comparison
Ekloev et al.(1998) 31 multi habitat quant watqual noenv S Sweden strms, early/late comparison
Tschaplinski(2000) 26 experi reach basin quant ripar lulc temporal Carnation Cr., B.C.
Holtby et al.(1989) 18 modeling reach quant hydro ripar lulc temporal Carnation Cr., B.C.
Holtby(1988) 17 quant popdyn basin wtemp lulc offchann temporal Carnation Cr., B.C.
Hartman et al.(1987) 14 quant reach offchann migrat substrate Carnation Cr., B.C.
Young et al.(1999) 25 experi reach quant ripar wtemp lwd temporal East Cr. B.C. logging; disjunctive
Lindsay et al.(1986) 22 late entry; codes to be entered John Day River basin
Crisp(1993) 20 multi reach quant popdyn migrat temporal 5 N Pennine strms, UK. dispersion/survival
Elliott et al.(1998) 19 quant popdyn spawn noenv Wilfin Beck, UK. Age structured, stock/rec..
Binns(1994) 18 experi reach habitat quant hydro temporal Beaver Cr. WY inst. structures
Niemelä et al.(1999) 17 multi reach quant temporal noenv Teno basin, N Finland. density cluster analysis
Fjellheim et al.(1996) 16 experi quant trophic temporal R Ekso, Norway. weir effects
Waters(1983) 16 reach quant popdyn sppinter substrate hydro temporal MN, production; communuty change
Baxter et al.(1999) 14 reach spawn instream wtemp substrate lulc Swan R. MT bull trout redd counts
House(1996) 13 experi reach instream substrate temporal E. Fork Lobster Cr. OR inst. structures
House(1995) 11 reach quant ripar instream temporal warning Dead Horse Canyon Cr. OR const. env
Kondolf(1994) 11 substrate graz qual economic N Fork Cottonwood Cr.
Hunt(1976) 10 experi reach quant instream temporal Lawrence Cr. WI inst. structures
Scruton et al.(1997) 10 reach quant spawn lakehydro instream substrate ifim temporal W. Salmon R. NFD. flow regul.

Fig. 1. Periods of investigation spanned by 128 studies from the ‘first cut’ database in which time period that fish
were sampled could be ascertained from the abstract (studies >9 yrs long shown in table).
Plot jittered for studies 1-9 yrs; dotted curve shows trend of study period versus mid- point year.
Some studies were disjunctive.

Lindsay et al.(1986)
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Fig. 2. Mean number of years spanned by studies (± standard error) as a function of biennial year group in which median of
study period occurred (based on 128 studies from quantitative subset in Table 1). Regression line through means sig. at P=0.002.
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Fig. 3. Numbers of studies as a function of biennial year group of publication (based on 216 studies from ‘quantitative’
subset in Table 1), and percentages of studies with landscape-scale variables and those with inferences to basin scale.
open circles = no. of quantitative studies (regression line shown, P=0.039)
diamonds = percent of studies incorporating lulc or other landscape scale variables (P=0.048)
solid circles = percent of studies with basinwide inferences (P=0.021)
(studies assigned the ripar classification, bot shown, indicated a small negative trend with time.)




